Genetic evidence that retinaldehyde dehydrogenase Raldh1 (Aldh1a1) functions downstream of alcohol dehydrogenase Adh1 in metabolism of retinol to retinoic acid.

نویسندگان

  • Andrei Molotkov
  • Gregg Duester
چکیده

Vitamin A (retinol) is a nutrient that is essential for developmental regulation but toxic in large amounts. Previous genetic studies have revealed that alcohol dehydrogenase Adh1 is required for efficient clearance of excess retinol to prevent toxicity, thus demonstrating that the mechanism involves oxidation of excess retinol to retinoic acid (RA). Whereas Adh1 plays a dominant role in the first step of the clearance pathway (oxidation of retinol to retinaldehyde), it is unknown what controls the second step (oxidation of retinaldehyde to RA). We now present genetic evidence that aldehyde dehydrogenase Aldh1a1, also known as retinaldehyde dehydrogenase Raldh1, plays a dominant role in the second step of retinol clearance in adult mice. Serum RA levels following a 50 mg/kg dose of retinol were reduced 72% in Raldh1-/- mice and 82% in Adh1-/- mice. This represented reductions in RA synthesis of 77-78% for each mutant after corrections for altered RA degradation in each. After retinol dosing, serum retinaldehyde was increased 2.5-fold in Raldh1-/- mice (indicating defective retinaldehyde clearance) and decreased 3-fold in Adh1-/- mice (indicating defective retinaldehyde synthesis). Serum retinol clearance following retinol administration was decreased 7% in Raldh1-/- mice and 69% in Adh1-/- mice. LD50 studies indicated a small increase in retinol toxicity in Raldh1-/- mice and a large increase in Adh1-/- mice. These observations demonstrate that Raldh1 functions downstream of Adh1 in the oxidative metabolism of excess retinol and that toxicity correlates primarily with accumulating retinol rather than retinaldehyde.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opposing actions of cellular retinol-binding protein and alcohol dehydrogenase control the balance between retinol storage and degradation.

Vitamin A homoeostasis requires the gene encoding cellular retinol-binding protein-1 (Crbp1) which stimulates conversion of retinol into retinyl esters that serve as a storage form of vitamin A. The gene encoding alcohol dehydrogenase-1 (Adh1) greatly facilitates degradative metabolism of excess retinol into retinoic acid to protect against toxic effects of high dietary vitamin A. Crbp1-/-/Adh1...

متن کامل

Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid.

Vitamin A (retinol) and provitamin A (beta-carotene) are metabolized to specific retinoid derivatives which function in either vision or growth and development. The metabolite 11-cis-retinal functions in light absorption for vision in chordate and nonchordate animals, whereas all-trans-retinoic acid and 9-cis-retinoic acid function as ligands for nuclear retinoic acid receptors that regulate ge...

متن کامل

Blockade of Retinol Metabolism Protects T Cell-Induced Hepatitis by Increasing Migration of Regulatory T Cells

Retinols are metabolized into retinoic acids by alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (Raldh). However, their roles have yet to be clarified in hepatitis despite enriched retinols in hepatic stellate cells (HSCs). Therefore, we investigated the effects of retinols on Concanavalin A (Con A)-mediated hepatitis. Con A was injected into wild type (WT), Raldh1 knock-out (Raldh1...

متن کامل

Altered Retinoic Acid Metabolism in Diabetic Mouse Kidney Identified by 18O Isotopic Labeling and 2D Mass Spectrometry

BACKGROUND Numerous metabolic pathways have been implicated in diabetes-induced renal injury, yet few studies have utilized unbiased systems biology approaches for mapping the interconnectivity of diabetes-dysregulated proteins that are involved. We utilized a global, quantitative, differential proteomic approach to identify a novel retinoic acid hub in renal cortical protein networks dysregula...

متن کامل

RALDH3, a retinaldehyde dehydrogenase that generates retinoic acid, is expressed in the ventral retina, otic vesicle and olfactory pit during mouse development

The enzymes that generate retinoic acid during development have been identified as members of the aldehyde dehydrogenase (ALDH) family. The developmental expression patterns of two ALDHs that function as retinaldehyde dehydrogenases, RALDH1 and RALDH2, have been described. Here we report the cloning and expression of a third retinaldehyde dehydrogenase from the mouse called RALDH3 that shares 9...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 38  شماره 

صفحات  -

تاریخ انتشار 2003